O=176-16t^2

Simple and best practice solution for O=176-16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for O=176-16t^2 equation:



=176-16O^2
We move all terms to the left:
-(176-16O^2)=0
We get rid of parentheses
16O^2-176=0
a = 16; b = 0; c = -176;
Δ = b2-4ac
Δ = 02-4·16·(-176)
Δ = 11264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$O_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$O_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11264}=\sqrt{1024*11}=\sqrt{1024}*\sqrt{11}=32\sqrt{11}$
$O_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{11}}{2*16}=\frac{0-32\sqrt{11}}{32} =-\frac{32\sqrt{11}}{32} =-\sqrt{11} $
$O_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{11}}{2*16}=\frac{0+32\sqrt{11}}{32} =\frac{32\sqrt{11}}{32} =\sqrt{11} $

See similar equations:

| 5(3-x)=-2x+-5 | | 2=3m | | 34+14y=343 | | 13x+110=203 | | -1(3-x)=-2x+-1 | | -5(3-x)=-2x+5 | | 1(22+-1.5y)+2y=26 | | X-3+4x,35x=2 | | 0=-4.9t^2+34.3+11 | | -4.9t^2+34.3+11=0 | | -9(3-x)=-2x+-9 | | 3(1+2a)+7(2-2a)=-31 | | -.5=(3/2)k+(3/2) | | 7(x-2)-8(x-8)=58 | | 7=9-4x | | -1/2=(3/2)k+(3/2) | | -(1/2)=(3/2)*k+(3/2) | | 5x-15=20+10× | | 58=7(x-2)-8(×-8) | | -(1/2)=(3/2)k+(3/2) | | (15÷100)x=30 | | 15÷100*x=30 | | 18-36k+3-18k=21 | | 25x+5=25x-2 | | -5(3-x)=-2x+-5 | | 20+0.05=10+0.07x | | -5(3-x)=-2x+-9 | | 100=4(1-4k) | | 7y+16=180 | | -4(6r-7)+3(5+4r)=31 | | 226=-6n+4(4-6n) | | x/3=3+(x-25/5) |

Equations solver categories